List Comprehensions
Let’s learn about list comprehensions! You are given three integers x,y and z representing the dimensions of a cuboid along with an integer n. Print a list of all possible coordinates given by (i, j, k) on a 3D grid where the sum of i + j + k is not equal to n. Here, 0 < i < x; 0 < j < y; 0 < k < z. Please use list comprehensions rather than multiple loops, as a learning exercise.
Example
x = 1
y = 1
z = 2
n = 3
All permutations of [i, j, k] are:
[[0, 0, 0],[0, 0, 1],[0, 0, 2],[0, 1, 0],[0, 1, 1],[0, 1, 2],[1, 0, 0],[1, 0, 1],[1, 0, 2],[1, 1, 0],[1, 1, 1],[1, 1, 2]]
Print an array of the elements that do not sum to n = 3.
[[0, 0, 0],[0, 0, 1],[0, 0, 2],[0, 1, 0],[0, 1, 1],[1, 0, 0],[1, 0, 1],[1, 1, 0],[1, 1, 2]]
Input Format
Four integers x,y,z and n, each on a separate line.
Constraints
Print the list in lexicographic increasing order.
Sample Input 0
1
1
1
2
Sample Output 0
[[0, 0, 0], [0, 0, 1], [0, 1, 0], [1, 0, 0], [1, 1, 1]]
Explanation 0
Each variable x,y and z will have values of 0 or 1. All permutations of lists in the form [i, j, k] = [[0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1], [1, 0, 0],[1, 0, 1],[1, 1, 0],[1, 1, 1]].
Remove all arrays that sum to n = 2 to leave only the valid permutations.
Sample Input 1
2
2
2
2
Sample Output 1
[[0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 2], [0, 2, 1], [0, 2, 2], [1, 0, 0], [1, 0, 2], [1, 1, 1], [1, 1, 2], [1, 2, 0], [1, 2, 1], [1, 2, 2], [2, 0, 1], [2, 0, 2], [2, 1, 0], [2, 1, 1], [2, 1, 2], [2, 2, 0], [2, 2, 1], [2, 2, 2]]
Solution:
if __name__ == '__main__':
x = int(input())
y = int(input())
z = int(input())
n = int(input())
list_val = []
for i in range(x+1):
for j in range(y+1):
for k in range(z+1):
if i+j+k != n:
new_val = [i, j, k]
list_val.append(new_val)
print(list_val)